Potenciando el ruezno de pistache: Fermentación en estado sólido para la recuperación de compuestos fenólicos
Boosting pistachio green hull: Solid-state fermentation for the recovery of phenolic compounds
Autor(es): Andrés Javier Ordoñez-Cano, Edwin Rojo-Gutiérrez, Leonardo Sepúlveda-Torre y José Juan Buenrostro-Figueroa
Fuente: Mexican Journal of Technology and Engineering, Vol. 3, No. 3, pp. 24-30.
DOI: https://doi.org/10.61767/mjte.003.3.2430
Resumen
El pistache es uno de los frutos secos más consumidos a nivel mundial, gracias a los múltiples beneficios atribuidos a este producto, como lo es la prevención contra enfermedades del corazón y la mejora de la diabetes tipo 2. A partir de su producción se generan subproductos, como el ruezno, en el cual se han identificado compuestos fenólicos (CF) con diferentes actividades biológicas. Algunos de estos CF se encuentran libres y otros ligados a componentes de pared celular, sin embargo, estos últimos pueden ser liberados mediante la acción de enzimas producidas por microorganismos cultivados en fermentación en estado sólido (FES), incrementando su concentración en la fracción libre, al quedar desvinculados de la pared celular. Para optimizar la FES y obtener los productos deseados, es fundamental establecer las condiciones adecuadas del proceso, así como seleccionar el microorganismo idóneo, cuyo papel es crucial debido a su capacidad para generar enzimas específicas que faciliten la bioconversión de los componentes de la pared celular en productos de interés.
Palabras clave: Residuo vegetal, valorización, microorganismos, fermentación, antioxidantes.
Abstract
The pistachio is one of the most consumed nuts worldwide, thanks to the multiple benefits of this product, such as the prevention of heart disease and the improvement of type 2 diabetes. By-products are generated from its production, such as the green hull, in which phenolic compounds (PC) with different biological activities have been identified. Some of these PCs are free, and others are bound to cell wall components; however, the latter can be released by the action of enzymes produced by microorganisms cultivated in solid-state fermentation (SSF), increasing their concentration in the free fraction, as they are detached from the cell wall. To optimize SSF and obtain the desired products, it is essential to establish the appropriate process conditions and select the ideal microorganism, whose role is crucial due to its capacity to generate specific enzymes that facilitate the bioconversion of cell wall components into products of interest.
Keywords: Plant residue, valorization, microorganisms, fermentation, antioxidants.
Referencias
Arjeh, E., Akhavan, H.-R., Barzegar, M., & Carbonell-Barrachina, Á. A. (2020). Bio-active compounds and functional properties of pistachio hull: A review. Trends in Food Science & Technology, 97, 55-64. https://doi.org/https://doi.org/10.1016/j.tifs.2019.12.031
Cano y Postigo, L. O., Jacobo-Velázquez, D. A., Guajardo-Flores, D., Garcia Amezquita, L. E., & García-Cayuela, T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 41, 100926. https://doi.org/https://doi.org/10.1016/j.fbio.2021.100926
Cardullo, N., Leanza, M., Muccilli, V., & Tringali, C. (2021). Valorization of Agri-Food Waste from Pistachio Hard Shells: Extraction of Polyphenols as Natural Antioxidants. Resources, 10(5).
Castañeda-Casasola, C.-C., Arana-Cuenca, A., Favela‐Torres, E., Reyes, M. A. A., González-Becerra, A. E., & Téllez-Jurado, A. (2017). Xylanase enzymes production by Aspergillus fumigatus in solid-state fermentation and submerged fermentation. Revista Mexicana de Ingeniería Química, 17(1), 47-61. https://doi.org/https://doi.org/10.24275/UAM%2FIZT%2FDCBI%2FREVMEXINGQUIM%2F2018V17N1%2FCASTANEDA
Celaya, L. S., Molina, A. C., González, M. A., Villa, W. C., Silva, L. R., & Viturro, C. I. (2022). Bioactive phenolic compounds and organic acids in the decoction of fruits and leaves of Schinus areira L. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 21(3), 343-351. https://doi.org/https://doi.org/10.37360/blacpma.22.21.3.20
Cerda-Cejudo, N. D., Buenrostro-Figueroa, J. J., Sepúlveda-Torre, L., Torres-León, C., Chávez-González, M. L., Ascacio-Valdés, J. A., & Aguilar, C. N. (2023). Solid-State Fermentation for the Recovery of Phenolic Compounds from Agro-Wastes. Resources, 12(3).
Costa, J. A. V., Treichel, H., Kumar, V., & Pandey, A. (2018). Chapter 1 – Advances in Solid-State Fermentation. In A. Pandey, C. Larroche, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 1-17). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63990-5.00001-3
De León-Delgado, M. M., Legarreta González, M. A., Olivas García, J. M., Guerrero Morales, S., & Baray Guerrero, M. R. (2020). Análisis financiero y económico del cultivo del pistache en el Municipio de López, Chihuahua. Revista Biológico Agropecuaria Tuxpan, 8(2), 14-22. https://doi.org/10.47808/revistabioagro.v8i2.175
Erşan, S., Güçlü Üstündağ, Ö., Carle, R., & Schweiggert, R. M. (2018). Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chemistry, 253, 46-54. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.01.116
Garcia-Moreno, P. J., de la Rosa, L. A., Stevens-Barron, J. C., Rodríguez-Ramirez, R., Corral-Diaz, B., Alvarez-Parrilla, E., Olivas-Aguirre, F. J., & Wall-Medrano, A. (2021). Dehiscence and prolonged storage of ‘Kerman’ Pistachios: Effects on morphometry and nutraceutical value. Journal of Food Science and Technology, 58(5), 1958-1968. https://doi.org/10.1007/s13197-020-04707-9
Herrera-Beltrán, G. M., & Salazar-Garcés, D. M. (2021). Fermentación sólida en la industria alimentaria Universidad Técnica de Ambato]. https://repositorio.uta.edu.ec/jspui/handle/123456789/32591
INC. (2024). Global Statistical Review (Nutfruit, Issue 3). https://inc.nutfruit.org/wp-content/uploads/2024/11/Nutfruit_Nov2024_low_links__.pdf
Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124566
Mandalari, G., Barreca, D., Gervasi, T., Roussell, M. A., Klein, B., Feeney, M. J., & Carughi, A. (2022). Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants, 11(1).
Martínez-Márquez, J. R., & Rodríguez-Moreno, V. M. (2008). Reforestation with Pistacia species in semi-arid lands in Chihuahua, México. Ciencia & Investigación Forestal, 14(3), 529 – 538. https://doi.org/10.52904/0718-4646.2008.306
Martínez-Ruíz, N. R., Rodrigo-García, J., & Corral-Díaz, B. (2019). Efecto del secado controlado sobre la calidad nutrimental del pistache (Pistacia vera L.) y subproductos producido en el Valle de Juárez, Chihuahua, México. http://cathi.uacj.mx/20.500.11961/7808
Mateos, R., Salvador, M. D., Fregapane, G., & Goya, L. (2022). Why Should Pistachio Be a Regular Food in Our Diet? Nutrients, 14(15).
Moreno-Rojas, J. M., Velasco-Ruiz, I., Lovera, M., Ordoñez-Díaz, J. L., Ortiz-Somovilla, V., De Santiago, E., Arquero, O., & Pereira-Caro, G. (2022). Evaluation of Phenolic Profile and Antioxidant Activity of Eleven Pistachio Cultivars (Pistacia vera L.) Cultivated in Andalusia. Antioxidants, 11(4).
Noorolahi, Z., Sahari, M. A., Ahmadi Gavlighi, H., & Barzegar, M. (2022). Pistachio green hull extract as natural antioxidant incorporated to omega-3 rich kappa-carrageenan oleogel in dry fermented sausage. Food Bioscience, 50, 101986. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101986
Noorolahi, Z., Sahari, M. A., Barzegar, M., & Ahmadi Gavlighi, H. (2020). Tannin fraction of pistachio green hull extract with pancreatic lipase inhibitory and antioxidant activity. Journal of Food Biochemistry, 44(6), e13208. https://doi.org/https://doi.org/10.1111/jfbc.13208
Osorio-Díaz, M. C. (2022). Enzimas pectinolíticas de cepas de Aspergillus niger (p. Micheli, 1729) en la fermentación de residuos agroindustriales de piña (Ananas comosus) y maracuyá (Passiflora edulis) Universidad de Córdoba]. https://repositorio.unicordoba.edu.co/handle/ucordoba/5024
Özbek, H. N., Halahlih, F., Göğüş, F., Koçak Yanık, D., & Azaizeh, H. (2018). Pistachio (Pistacia vera L.) Hull as a Potential Source of Phenolic Compounds: Evaluation of Ethanol–Water Binary Solvent Extraction on Antioxidant Activity and Phenolic Content of Pistachio Hull Extracts. Waste and Biomass Valorization, 11(5), 2101-2110. https://doi.org/10.1007/s12649-018-0512-6
Pakdaman, N., Dargahi, R., Nadi, M., Javanshah, A., Shakerardekani, A., & Saberi, N. (2021). Optimizing the Extraction of Phenolic Compounds from Pistachio Hulls. Journal of Nuts, 4(12), 361-370. https://doi.org/10.22034/jon.2021.1941474.1132