Méndez-González et al. 2023

THE SALT CONTENT IS NOT A LIMITATION FOR ENSILING SARGASSUM COLLECTED IN THE MEXICAN CARIBBEAN

EL CONTENIDO DE SALES NO ES UNA LIMITANTE PARA ENSILAR EL SARGAZO RECOLECTADO EN EL CARIBE MEXICANO

Autor(es):  F. Méndez-González, B. Hernández-Zarco y E. Favela-Torres

Fuente: Mexican Journal of Technology and Engineering, Vol. 2, No. 1, pp. 44-52.

DOI:  https://doi.org/10.61767/mjte.002.1.4452 

Abstract 

Since 2011, sargassum has been infesting the coasts of the Mexican Caribbean, affecting the environment, human health, and economic activities. However, sargassum can be used via different processes to obtain alginates, fucoidans, biofuels, agricultural fertilizers, and livestock feed. Nevertheless, the quantity and composition of the sargassum that reaches the coasts of the Mexican Caribbean present a high seasonal variation, which hinders its industrial exploitation. Therefore, to ensure a supply of sargassum susceptible to industrial processing, the pretreatment conditions for its conservation through ensiling were determined. Among them, inoculum addition, sargassum desalination, and the incorporation of additives were evaluated. In sargassum without pretreatment, inoculum addition cannot effectively lower the pH in the silo. In contrast, glucose addition (~261 mg/gdm) in washed sargassum enriched with nutrient solution allows a pH decrease up to ~4.8, reaching an average glucose bioconversion to lactic acid above 68 %. Similar results were obtained when ensiling sargassum without washing, reaching the maximum decrease in pH after 10 d. In addition, low contents of acetic acid (< 20 mg/gdm) and ethanol (< 8 mg/gdm) were registered in these silos, indicating a low activity of other microorganisms. Therefore, adequate sargassum silage requires the addition of inoculant, glucose, and nutrient.

Keywords: Lactobacillus casei, lactic fermentation, silage additives, sargassum management, solid-state fermentation.

Resumen

Desde el 2011, el sargazo infesta las costas del Caribe Mexicano, afectando al medio ambiente, la salud humana y la economía. Sin embargo, el sargazo puede ser aprovechado para la obtención de alginatos, fucoidanos, biocombustibles, fertilizantes y alimento pecuario. No obstante, la cantidad y composición del sargazo que arriba a la costa presenta alta variación estacional; lo cual, dificulta su explotación industrial. Por lo tanto, para asegurar el suministro de sargazo susceptible de procesarse industrialmente, se determinaron las condiciones de pretratamiento para su conservación por ensilaje. Entre ellas, se evaluó la desalinización e incorporación de aditivos. La adición de inóculo no fue efectiva para disminuir el pH del sargazo sin pretratamiento. En contraste, adicionando glucosa (~261 mg/gms) al sargazo lavado y enriquecido con nutrientes, se disminuye el pH hasta ~4.8, alcanzando una bioconversión de glucosa a ácido láctico superior al 68 %. Resultados similares se obtuvieron ensilando sargazo sin lavar, alcanzando una máxima disminución de pH después de 10 d. Además, en ambos se registró bajo contenido de ácido acético (< 20 mg/gms) y etanol (< 8 mg/gms), indicando baja actividad de otros microorganismos. Por lo tanto, para ensilar el sargazo se requiere la adición de inóculo, glucosa y nutrientes.

Palabras clave: Lactobacillus casei, fermentación láctica, aditivos de ensilaje, manejo del sargazo, fermentación en estado sólido.

Referencias

F. Méndez-González, A. Pichardo-Sánchez, B. Espinosa-Ramírez, N. Rodríguez-Durán, G. Bustos-Vázquez, L.V. Rodríguez-Durán, Valorization of nonnative aquatic weeds biomass through their conversion to biofuel, in: L. Ríos-González, A. Rodríguez-de-la-Garza, M. Medina-Morales, C. Aguilar (Eds.), Handbook of Research on Bioenergy and Biomaterials, 1st ed., Apple Academic Press, New York, 2021: pp. 271–282.

N.F. Putman, R. He, Tracking the long-distance dispersal of marine organisms: sensitivity to ocean model resolution, J R Soc Interface. 10 (2013) 20120979. https://doi.org/10.1098/rsif.2012.0979 

M. Wang, C. Hu, B.B. Barnes, G. Mitchum, B. Lapointe, J.P. Montoya, The great Atlantic Sargassum belt, Science (1979). 365 (2019) 83–87. https://doi.org/10.1126/science.aaw7912 

B.I. van Tussenbroek, H.A. Hernández Arana, R.E. Rodríguez-Martínez, J. Espinoza-Avalos, H.M. Canizales-Flores, C.E. González-Godoy, M.G. Barba-Santos, A. Vega-Zepeda, L. Collado-Vides, Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities, Mar Pollut Bull. 122 (2017) 272–281. https://doi.org/10.1016/j.marpolbul.2017.06.057 

V. Chávez, A. Uribe-Martínez, E. Cuevas, R.E. Rodríguez-Martínez, B.I. van Tussenbroek, V. Francisco, M. Estévez, L.B. Celis, L.V. Monroy-Velázquez, R. Leal-Bautista, L. Álvarez-Filip, M. García-Sánchez, L. Masia, R. Silva, Massive influx of pelagic Sargassum spp. on the coasts of the Mexican Caribbean 2014–2020: Challenges and opportunities, Water (Basel). 12 (2020) 2908. https://doi.org/10.3390/w12102908 

J.L. López Miranda, L.B. Celis, M. Estévez, V. Chávez, B.I. van Tussenbroek, A. Uribe-Martínez, E. Cuevas, I. Rosillo Pantoja, L. Masia, C. Cauich-Kantun, R. Silva, Commercial potential of pelagic Sargassum spp. in Mexico, Front Mar Sci. 8 (2021). https://doi.org/10.3389/fmars.2021.768470 

F. Méndez-González, J.J. Buenrostro-Figueroa, Sargazo, el potencial recurso del Mar Caribe, Mexican Journal of Technology and Engineering. 2 (2023) 14–17. https://doi.org/10.61767/mjte.002.1.1417 

K.K.A. Sanjeewa, N. Kang, G. Ahn, Y. Jee, Y.-T. Kim, Y.-J. Jeon, Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review, Food Hydrocoll. 81 (2018) 200–208. https://doi.org/10.1016/j.foodhyd.2018.02.040 

G.A. Molina, M.A. González-Reyna, A.M. Loske, F. Fernández, D.A. Torres-Ortiz, M. Estevez, Weak shock wave-mediated fucoxanthin extraction from Sargassum spp. and its electrochemical quantification, Algal Res. 68 (2022) 102891. https://doi.org/10.1016/j.algal.2022.102891 

J.J. Milledge, P.J. Harvey, Ensilage and anaerobic digestion of Sargassum muticum, J Appl Phycol. 28 (2016) 3021–3030. https://doi.org/10.1007/s10811-016-0804-9 

K. Saravanan, S. Duraisamy, G. Ramasamy, A. Kumarasamy, S. Balakrishnan, Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production, Biocatal Agric Biotechnol. 14 (2018) 444–449. https://doi.org/10.1016/j.bcab.2018.03.017 

S. Surtharsan, S. Nishanthi, S. Srikrishnah, Effects of foliar application of seaweed (Sargassum crassifolium) liquid extract on the performance of Lycopersicon esculentum Mill. in Sandy Regosol of Batticaloa District Sri Lanka, Am Eurasian J Agric Environ Sci. 14 (2014) 1386–1396.

A. Kumar, B. Vanlazarzova, S. Sridhar, M. Baluswami, Effect of liquid seaweed fertilizer of Sargassum wightii grev. on the growth and biochemical content of green gram (Vigna radiata (L.) R. wilczek), Recent Research in Science and Technology. 4 (2012) 40–45.

C. Kalaivanan, V. Venkatesalu, Utilization of seaweed Sargassum myriocystum extracts as a stimulant of seedlings of Vigna mungo (L.) Hepper, Spanish Journal of Agricultural Research. 10 (2012) 466–472. https://doi.org/10.5424/sjar/2012102-507-10 

P. Vaghela, K. Trivedi, K.G.V. Anand, H. Brahmbhatt, J. Nayak, K. Khandhediya, K. Prasad, K. Moradiya, D. Kubavat, L.J. Konwar, V. Veeragurunathan, P.G. Grace, A. Ghosh, Scientific basis for the use of minimally processed homogenates of Kappaphycus alvarezii (red) and Sargassum wightii (brown) seaweeds as crop biostimulants, Algal Res. 70 (2023) 102969. https://doi.org/10.1016/j.algal.2023.102969 

S. Carrillo, A. Bahena, Casas M, Carranco M, Calvo C, E. Ávila, F. Pérez-Gil, El alga Sargassum spp. como alternativa para reducir el contenido de colesterol en el huevo, Revista Cubana de Ciencia Agrícola. 46 (2012) 181–186.

H. Gojon-Báez, D. Siqueiros-Beltrones, H. Hernández-Contreras, In situ ruminal digestibility and degradability of Macrocystis pyrifera and Sargassum spp. In bovine livestock, Cienc Mar. 24 (1998) 463–481. https://doi.org/10.7773/cm.v24i4.762 

K.Y. Park, Y.H. Jo, J. Ghassemi Nejad, J.C. Lee, H.G. Lee, Evaluation of nutritional value of Ulva sp. and Sargassum horneri as potential eco-friendly ruminants feed, Algal Res. 65 (2022) 102706. https://doi.org/10.1016/j.algal.2022.102706 

J. Vijayakumar, R. Aravindan, T. Viruthagiric, Recent trends in the production, purification and applicatión of lactic acid, Chemical and Biochemical Engineering Quaterly. 22 (2008) 245–264.

V. Hervé, J. Lambourdière, M. René-Trouillefou, D.A. Devault, P.J. Lopez, Sargassum differentially shapes the microbiota composition and diversity at coastal tide sites and inland storage sites on Caribbean Islands, Front Microbiol. 12 (2021). https://doi.org/10.3389/fmicb.2021.701155 

F. Fernández, C. Boluda, J. Olivera, L. Guillermo, E. Echeverria, A. Gómez, Análisis elemental prospectivo de la biomasa algal acumulada en las costas de la República Dominicana, Revista Centro Azúcar. 44 (2017) 11–22.

A. Desrochers, S. Cox, H. Oxenford, B. van Tusenbroek, Sargassum uses guide: A resource for Caribbean researchers, entrpreneurs and policy makers, Centre for Resource Management and Environmental Studies, Barbados, 2020.

L. Kung, R.D. Shaver, R.J. Grant, R.J. Schmidt, Silage review: Interpretation of chemical, microbial, and organoleptic components of silages, J Dairy Sci. 101 (2018) 4020–4033. https://doi.org/10.3168/jds.2017-13909 

R.E. Muck, Factors influencing silage quality and their implications for management, J Dairy Sci. 71 (1988) 2992–3002. https://doi.org/10.3168/jds.S0022-0302(88)79897-5 

G. Borreani, E. Tabacco, R.J. Schmidt, B.J. Holmes, R.E. Muck, Silage review: Factors affecting dry matter and quality losses in silages, J Dairy Sci. 101 (2018) 3952–3979. https://doi.org/10.3168/jds.2017-13837 

T.W. Kang, A.T. Adesogan, S.C. Kim, S.S. Lee, Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage, J Dairy Sci. 92 (2009) 732–738. https://doi.org/10.3168/jds.2007-0780 

K.G. Arriola, O.C.M. Queiroz, J.J. Romero, D. Casper, E. Muniz, J. Hamie, A.T. Adesogan, Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage, J Dairy Sci. 98 (2015) 478–485. https://doi.org/10.3168/jds.2014-8411 

R. E. Muck, Dry matier level effects on alfalfa silage quality II. fermentation products and starch hydrolysis, Transactions of the ASAE. 33 (1990) 0373–0381. https://doi.org/10.13031/2013.31340 

T.F. Bernardes, L.G. Nussio, R.C. do Amaral, Top spoilage losses in maize silage sealed with plastic films with different permeabilities to oxygen, Grass and Forage Science. 67 (2012) 34–42. https://doi.org/10.1111/j.1365-2494.2011.00823.x 

L. Kung, M. Stokes, C. Lin, Silage additives, in: D. Buxton, R. Muck, J. Harrison (Eds.), Silage Science and Technology, American Society of Agronomy, Madison, 2003: pp. 305–360.

R.E. Muck, E.M.G. Nadeau, T.A. McAllister, F.E. Contreras-Govea, M.C. Santos, L. Kung, Silage review: Recent advances and future uses of silage additives, J Dairy Sci. 101 (2018) 3980–4000. https://doi.org/10.3168/jds.2017-13839 

P. McDonald, A. Henderson, S. Heron, The Biochemistry of Silage, 2nd ed., Chalcombe Publications, Marlow, 1992. https://doi.org/10.1017/S0014479700023115