¿Recolección de energía limpia en México?
Clean Energy Harvesting in Mexico?
Autor(es): Daniel Rivera-Martínez, David Sánchez-Luna, María Belem Arce-Vazquez, Yuri Sara Hernández-Demesa y Ángel Eduardo Márquez-Ortega
Fuente: Mexican Journal of Technology and Engineering, Vol. 4, No. 2, pp. 20-28
DOI: https://doi.org/10.61767/mjte.004.2.2028
Resumen
La recolección de energía es un proceso que permite obtener electricidad utilizable a partir de la captura y conversión de diversas formas de energía ambiental, que pueden incluir desde la radiación solar hasta las vibraciones generadas por el tráfico vehicular. México, gracias a su ubicación geográfica, posee un alto potencial para la generación de energía, ya que cuenta con una amplia variedad de recursos naturales como la energía solar, eólica, hidráulica y geotérmica, entre otras. Considerando la necesidad global de reducir las emisiones de gases de efecto invernadero y minimizar el impacto ambiental, resulta fundamental explorar nuevas oportunidades para optimizar la generación de energía mediante distintas técnicas de recolección.
Palabras clave: Recolección de energía, energías renovables, energías limpias.
Abstract
Energy harvesting is a process that enables the generation of usable electricity by capturing and converting various forms of ambient energy, ranging from solar radiation to vibrations produced by vehicular traffic. Due to its geographical location, Mexico has great potential for energy generation, as it possesses a wide variety of natural resources, including solar, wind, hydro, and geothermal energy, among others. Given the global need to reduce greenhouse gas emissions and minimize environmental impact, it is essential to explore new opportunities to optimize energy generation through different harvesting techniques.
Keywords: Energy harvesting, renewable energy, clean energy.
Referencias
Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J., Dallemand, J. F., & Parra, R. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140–153. https://doi.org/10.1016/J.RSER.2014.01.004
Attanayake, K., Wickramage, I., Samarasinghe, U., Ranmini, Y., Ehalapitiya, S., Jayathilaka, R., & Yapa, S. (2024). Renewable energy as a solution to climate change: Insights from a comprehensive study across nations. PLOS ONE, 19(6), e0299807. https://doi.org/10.1371/JOURNAL.PONE.0299807
Bosso, N., Magelli, M., & Zampieri, N. (2020). Application of low-power energy harvesting solutions in the railway field: a review. Https://Doi.Org/10.1080/00423114.2020.1726973, 59(6), 841–871. https://doi.org/10.1080/00423114.2020.1726973
Castrejon-Campos, O. (2022). Evolution of clean energy technologies in Mexico: A multi-perspective analysis. Energy for Sustainable Development, 67, 29–53. https://doi.org/10.1016/J.ESD.2022.01.003
Cruz Ake, S., Ortiz Arango, F., & García Ruiz, R. S. (2024). Possible paths for Mexico’s electricity system in the clean energy transition. Utilities Policy, 87, 101716. https://doi.org/10.1016/J.JUP.2024.101716
Ding, G., Zhao, X., Wang, J., & Xu, C. (2018). Vibration energy harvesting from roads under traffic loads. Https://Doi.Org/10.1080/14680629.2018.1527719, 21(3), 780–799. https://doi.org/10.1080/14680629.2018.1527719
García-Caballero, E., Appendini, C. M., Figueroa-Espinoza, B., Allende-Arandía, M. E., Magar, V., & Gross, M. S. (2023). Wind energy potential assessment for Mexico’s Yucatecan Shelf. Energy for Sustainable Development, 74, 415–429. https://doi.org/10.1016/J.ESD.2023.04.016
Hernández-Fontes, J. V., Felix, A., Mendoza, E., Cueto, Y. R., & Silva, R. (2019). On the Marine Energy Resources of Mexico. Journal of Marine Science and Engineering 2019, Vol. 7, Page 191, 7(6), 191. https://doi.org/10.3390/JMSE7060191
Hwang, S. J., Jung, H. J., Kim, J. H., Ahn, J. H., Song, D., Song, Y., Lee, H. L., Moon, S. P., Park, H., & Sung, T. H. (2015). Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Current Applied Physics, 15(6), 669–674. https://doi.org/10.1016/J.CAP.2015.02.009
Icaza-Alvarez, D., Galan-Hernandez, N. D., Orozco-Guillen, E. E., & Jurado, F. (2023). Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050. Energies, 16(20), 7121. https://doi.org/10.3390/EN16207121/S1
Karimi, M., Karimi, A. H., Tikani, R., & Ziaei-Rad, S. (2016). Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles. International Journal of Mechanical Sciences, 119, 1–11. https://doi.org/10.1016/J.IJMECSCI.2016.09.029
Kütt, L., Millar, J., Karttunen, A., Lehtonen, M., & Karppinen, M. (2018). Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves. Renewable and Sustainable Energy Reviews, 98, 519–544. https://doi.org/10.1016/J.RSER.2017.03.051
Li, R., Yu, Y., Zhou, B., Guo, Q., Li, M., & Pei, J. (2018). Harvesting energy from pavement based on piezoelectric effects: Fabrication and electric properties of piezoelectric vibrator. Journal of Renewable and Sustainable Energy, 10(5), 054701. https://doi.org/10.1063/1.5002731
Li, X., & Strezov, V. (2014). Modelling piezoelectric energy harvesting potential in an educational building. Energy Conversion and Management, 85, 435–442. https://doi.org/10.1016/J.ENCONMAN.2014.05.096
Liu, Y., Shang, S., Mo, S., Wang, P., & Wang, H. (2020). Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. International Journal of Precision Engineering and Manufacturing-Green Technology 2020 8:4, 8(4), 1323–1346. https://doi.org/10.1007/S40684-020-00285-5
López-Flores, F. J., Ramírez-Márquez, C., Rubio-Castro, E., & Ponce-Ortega, J. M. (2024). Solar photovoltaic panel production in Mexico: A novel machine learning approach. Environmental Research, 246, 118047. https://doi.org/10.1016/J.ENVRES.2023.118047
Masera, O., & Rivero, J. C. S. (2022). Promoting a Sustainable Energy Transition in Mexico: the Role of Solid Biofuels. Bioenergy Research, 15(4), 1691–1693. https://doi.org/10.1007/S12155-022-10540-Z/METRICS
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3
Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., & Yap, P. S. (2023). Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letters, 21(2), 741–764. https://doi.org/10.1007/S10311-022-01532-8/METRICS
Pourasl, H. H., Barenji, R. V., & Khojastehnezhad, V. M. (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10, 3474–3493. https://doi.org/10.1016/J.EGYR.2023.10.022
Pradeesh, E. L., Udhayakumar, S., Vasundhara, M. G., & Kalavathi, G. K. (2022). A review on piezoelectric energy harvesting. Microsystem Technologies, 28(8), 1797–1830. https://doi.org/10.1007/S00542-022-05334-4/FIGURES/8
Reyes-Santiago, M. del R., Maruri Montes de Oca, A. E., Olalde Portugal, V., & Hernández-Rosales, M. (2024). Adaptive capability and socioecological traps: a bioenergy case in communities of Irapuato, Guanajuato, Mexico. Energy, Sustainability and Society, 14(1). https://doi.org/10.1186/S13705-024-00445-4
Sezer, N., & Koç, M. (2021). A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 80, 105567. https://doi.org/10.1016/J.NANOEN.2020.105567
Sheng, W., Xiang, H., Zhang, Z., & Yuan, X. (2022). High-efficiency piezoelectric energy harvester for vehicle-induced bridge vibrations: Theory and experiment. Composite Structures, 299, 116040. https://doi.org/10.1016/J.COMPSTRUCT.2022.116040
Song, Y., Yang, C. H., Hong, S. K., Hwang, S. J., Kim, J. H., Choi, J. Y., Ryu, S. K., & Sung, T. H. (2016). Road energy harvester designed as a macro-power source using the piezoelectric effect. International Journal of Hydrogen Energy, 41(29), 12563–12568. https://doi.org/10.1016/j.ijhydene.2016.04.149
Summerfield-Ryan, O., & Park, S. (2023). The power of wind: The global wind energy industry’s successes and failures. Ecological Economics, 210, 107841. https://doi.org/10.1016/J.ECOLECON.2023.107841
Wang, H., Jasim, A., & Chen, X. (2018). Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Applied Energy, 212, 1083–1094. https://doi.org/10.1016/J.APENERGY.2017.12.125
Xie, X. D., Wang, Q., & Wang, S. J. (2015). Energy harvesting from high-rise buildings by a piezoelectric harvester device. Energy, 93, 1345–1352. https://doi.org/10.1016/J.ENERGY.2015.09.131
Yang, H., Wei, Y., Zhang, W., Ai, Y., Ye, Z., & Wang, L. (2021). Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters. Sensors 2021, Vol. 21, Page 2876, 21(8), 2876. https://doi.org/10.3390/S21082876
Zhang, Y., Cai, S. C. S., & Deng, L. (2014). Piezoelectric-based energy harvesting in bridge systems. Journal of Intelligent Material Systems and Structures, 25(12), 1414–1428. https://doi.org/10.1177/1045389X13507354
Zhang, Z., Xiang, H., Tang, L., & Yang, W. (2022). A comprehensive analysis of piezoelectric energy harvesting from bridge vibrations. Journal of Physics D: Applied Physics, 56(1), 014001. https://doi.org/10.1088/1361-6463/AC9F21