LOS PIEZOELÉCTRICOS: COSECHANDO ENERGÍA MECÁNICA
PIEZOELECTRICS: MECHANICAL ENERGY HARVESTING
Autor(es): D. Hernández-Rivera y N. López-Ramírez
Fuente: Mexican Journal of Technology and Engineering, Vol. 1, No. 3, pp. 4-10.
DOI: https://doi.org/10.61767/mjte.001.3.0410
Resumen
Las energías renovables son fuentes de energía de gran interés debido al menor impacto ecológico que presentan comparadas con las energías fósiles. La cosecha de energía (CdE) es un proceso para obtener energía de fuentes renovables, la cual no ha recibido suficiente atención como los procesos de generación de otras fuentes de energía renovables como la solar, la eólica o la hidráulica; sin embargo, la CdE tiene una gran oportunidad de aplicación para abastecer de energía a dispositivos electrónicos de baja potencia tales como relojes, audífonos, receptores bluetooth, marcapasos, etc. La CdE permite la generación de energía eléctrica a partir de energía ambiental tal como calor, movimiento, vibraciones, y radiación. En este tipo de tecnología, el dispositivo transductor tiene una función primordial ya que permite transformar la energía ambiental en eléctrica. Existen muchos tipos de transductores, sin embargo, los materiales piezoeléctricos destacan, ya que, permiten transformar energía mecánica de diferente naturaleza (vibración, deformación, torsión, etc.) en energía eléctrica. El presente artículo tiene como objetivo informar sobre la cosecha de energía como una alternativa para obtener energías renovables no convencionales y mencionar ciertas aplicaciones donde podemos utilizar a los piezoeléctricos como elementos cosechadores de energía.
Palabras clave: Cosecha de energía; Piezoelectricidad; Energías renovables; Fluoruro de polivinilideno.
Abstract
Renewable energies are energy sources of great interest due to their low ecological impact when compared to fossil energies. Energy harvesting (EH) is a process that allow obtaining energy from renewable sources, which has not received enough attention as the generation processes of other renewable energy sources such as solar, wind, or hydro. EH, however, has a broad application opportunity to supply energy to low power electronic devices such as watches, hearing aids, Bluetooth receivers, pacemakers, etc. Energy harvesting allows the generation of electrical energy from environmental energy such as heat, movement, vibrations, and radiation. In this technology, the transducer device has a fundamental function since it transforms environmental energy into electrical energy. Although there are many types of transducers, piezoelectric materials stand out, since they can transform different kinds of mechanical energy (vibration, deformation, torsion, etc) into electrical energy. The purpose of this article is to inform about energy harvesting as an alternative to conventional renewable energies and to mention some applications where piezoelectric materials can be used as energy harvesting elements.
Keywords: Energy harvesting; Piezoelectricity, Renewable energies; Polyvinylidene fluoride.
Referencias
Subsecretaría de Planeación y Transición Energética. Balance Nacional de Energía 2020 2021. Recuperado de: https://www.gob.mx/cms/uploads/attachment/file/707654/BALANCE_NACIONAL_ENERGIA_0403.pdf.
Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021;80:105567. https://doi.org/10.1016/J.NANOEN.2020.105567.
Pradeesh EL, Udhayakumar S, Vasundhara MG, Kalavathi GK. A review on piezoelectric energy harvesting. Microsyst Technol 2022;28:1797–830. https://doi.org/10.1007/S00542-022-05334-4/FIGURES/8.
Liu Y, Shang S, Mo S, Wang P, Wang H. Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. Int J Precis Eng Manuf Technol 2020 84 2020;8:1323–46. https://doi.org/10.1007/S40684-020-00285-5.
Patil DD, Subramanian KS. Additively Manufactured and Liquid Metal Sprayed Rectenna for Energy Harvesting Application. IEEE Trans Components, Packag Manuf Technol 2022:1–1. https://doi.org/10.1109/TCPMT.2022.3228321.
Shukla AK, Mitra S, Dhakar S, Maiti A, Sharma S, Dey KK. Electrochemical Energy Harvesting Using Microbial Active Matter. ACS Appl Bio Mater 2022. https://doi.org/10.1021/ACSABM.2C00785.
Prasad CR, Rao PR, Srikanth Y, Chakradhar A. Review on energy harvesting techniques for wearable devices in wireless body area networks. AIP Conf Proc 2022;2418:030029. https://doi.org/10.1063/5.0081675.
Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsystems Nanoeng 2021 71 2021;7:1–14. https://doi.org/10.1038/s41378-021-00248-z.
Clementi G, Cottone F, Di Michele A, Gammaitoni L, Mattarelli M, Perna G, et al. Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting. Energies 2022, Vol 15, Page 6227 2022;15:6227. https://doi.org/10.3390/EN15176227.
Lovinger AJ. Ferroelectric polymers. Science (80) 1983. https://doi.org/10.1126/science.220.4602.1115.
Gregorio R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 2006. https://doi.org/10.1002/app.23137.
Hernández-Rivera D, Suaste-Gómez E. Fabrication of piezoelectric PVDF/graphene membranes by electrospinning for respiratory rate and temperature sensing. IFMBE Proc., 2017. https://doi.org/10.1007/978-981-10-4086-3_100.
Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X. Properties and applications of the β phase poly(vinylidene fluoride). Polymers (Basel) 2018. https://doi.org/10.3390/polym10030228.
Hernández-Rivera D, Torres-Landa SD, Rangel-Ayala M, Agarwal V. Fluorescent films based on PVDF doped with carbon dots for evaluation of UVA protection of sunscreens and fabrication of cool white LEDs. RSC Adv 2021. https://doi.org/10.1039/d1ra04746a.
Wang F, Zhao X, Li J. PVDF energy-harvesting devices: Film preparation, electric poling, energy-harvesting efficiency. Annu Rep – Conf Electr Insul Dielectr Phenomena, CEIDP 2015;2015-December:80–3. https://doi.org/10.1109/CEIDP.2015.7352153.
Park S, Kim Y, Jung H, Park JY, Lee N, Seo Y. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes. Sci Reports 2017 71 2017;7:1–8. https://doi.org/10.1038/s41598-017-17791-3.
Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci U S A 2014;111:1927–32. https://doi.org/10.1073/PNAS.1317233111/SUPPL_FILE/SM04.WMV.
Kim S, Chou PH. Energy harvesting: Energy harvesting with supercapacitor-based energy storage. Smart Sensors Syst 2015:215–41. https://doi.org/10.1007/978-3-319-14711-6_10/FIGURES/12.