Producción de levano microbiano y usos potenciales
Microbial levan production and potential uses
Autor(es): Mariana González-Torres, Francisco Hernández-Rosas, Josafhat Salinas-Ruiz, José Andrés Herrera Corredor, Neith A. Pacheco-López y Ricardo Hernández Martínez
Fuente: Mexican Journal of Technology and Engineering, Vol. 4, No. 1, pp. 17-25
DOI: https://doi.org/10.61767/mjte.004.1.1725
Resumen
Los fructooligosacáridos (FOS) son carbohidratos no digeribles compuestos principalmente por cadenas de fructosa. Entre los FOS más importantes se encuentra el levano. Este biopolímero puede ser sintetizado por algunas plantas y microorganismos como bacterias y levaduras. La producción de levano por vía microbiana y por vía enzimática ha mostrado ser estrategias prometedoras para mejorar la eficiencia y la producción a gran escala. El levano tiene alta demanda en industrias como la alimentaria, la farmacéutica y la cosmética debido a sus propiedades fisicoquímicas que permiten utilizarlo como emulsificante, antioxidante, espesante, estabilizador y como prebiótico.
Palabras clave: Biopolímeros, microorganismos, biotecnología.
Abstract
Fructooligosaccharides (FOS) are non-digestible carbohydrates composed mainly of fructose chains. Among the most important FOS is levan. This biopolymer can be synthesized by some plants and microorganisms such as bacteria and yeasts. The production of levan by microbial and enzymatic means has shown to be a promising strategy to improve efficiency and large-scale production. Levan is in high demand in industries such as food, pharmaceutical, and cosmetics due to its physicochemical properties that allow it to be used as an emulsifier, antioxidant, thickener, stabilizer, and as prebiotic.
Keywords: Biopolymers, microorganisms, biotechnology.
Referencias
Ávila-Fernández, Á., Montiel, S., Rodríguez-Alegría, M. E., Caspeta, L., & López Munguía, A. (2023). Simultaneous enzyme production, Levan-type FOS synthesis and sugar by-products elimination using a recombinant Pichia pastoris strain expressing a levansucrase-endolevanase fusion enzyme. Microbial Cell Factories, 22(1), 1–12. https://doi.org/10.1186/s12934-022-02009-7
Ahmad, W., Nasir, A., Sattar, F., Ashfaq, I., Chen, M. H., Hayat, A., Rehman, M. ur, Zhao, S., Khaliq, S., Ghauri, M. A., & Anwar, M. A. (2022). Production of bimodal molecular weight levan by a Lactobacillus reuteri isolate from fish gut. Folia Microbiologica, 67(1), 21–31. https://doi.org/10.1007/s12223-021-00913-w
Bae, I. Y., Oh, I. K., Lee, S., Yoo, S. H., & Lee, H. G. (2008). Rheological characterization of levan polysaccharides from Microbacterium laevaniformans. International Journal of Biological Macromolecules, 42(1), 10–13. https://doi.org/10.1016/j.ijbiomac.2007.08.006
Bahroudi, S., Shabanpour, B., Combie, J., Shabani, A., & Salimi, M. (2020). Levan exerts health benefit effect through alteration in bifidobacteria population. Iranian Biomedical Journal, 24(1), 54–59. https://doi.org/10.29252/ibj.24.1.54
Bhadra, S., Chettri, D., & Verma, A. K. (2022). Microbes in fructooligosaccharides production. Bioresource Technology Reports, 20, 101159. https://doi.org/10.1016/j.biteb.2022.101159
Belmonte-Izquierdo, Y., Salomé-Abarca, L. F., González-Hernández, J. C., & López, M. G. (2023). Fructooligosaccharides (FOS) Production by Microorganisms with Fructosyltransferase Activity. Fermentation, 9(11), 1–30. https://doi.org/10.3390/fermentation9110968
Chen, W., Tan, D., Yang, Z., Tang, J., Bai, W., & Tian, L. (2023). Fermentation patterns of prebiotics fructooligosaccharides-SCFA esters inoculated with fecal microbiota from ulcerative colitis patients. Food and Chemical Toxicology, 180(August), 114009. https://doi.org/10.1016/j.fct.2023.114009
Chidambaram, J. S. C. A., Veerapandian, B., Sarwareddy, K. K., Mani, K. P., Shanmugam, S. R., & Venkatachalam, P. (2019). Studies on solvent precipitation of levan synthesized using Bacillus subtilis MTCC 441. Heliyon, 5(9), e02414. https://doi.org/10.1016/j.heliyon.2019.e02414
de la Rosa, O., Flores-Gallegos, A. C., Muñíz-Marquez, D., Nobre, C., Contreras-Esquivel, J. C., & Aguilar, C. N. (2019). Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends in Food Science & Technology, 91, 139-146. https://doi.org/10.1016/j.tifs.2019.06.013
de Siqueira, E.C.; Öner, E.T. Co-production of levan with other high-value bioproducts: A review. Int. J. Biol. Macromol. 2023, 235, 123800. https://doi.org/10.1016/j.ijbiomac.2023.123800
Esmeralda-Guzmán, M., Juan, J. B. F., Aguilar, C. N., Juan, A. A. V., & Sepúlveda, L. (2024). Parameters That Influence the Fermentation Submerged Process: Bioprocess Development in Biotechnology. Bioresources and Bioprocess in Biotechnology for a Sustainable Future, 179-200.
Franken, J., Brandt, B. A., Tai, S. L., & Bauer, F. F. (2013). Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PloS one, 8(10), e77499. https://doi.org/10.1371/journal.pone.0077499
González-Garcinuño, Á., Tabernero, A., Domínguez, Á., Galán, M. A., & Martin del Valle, E. M. (2018). Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. Biocatalysis and Biotransformation, 36(3), 233–244. https://doi.org/10.1080/10242422.2017.1314467
González-Torres, M., Hernández-Rosas, F., Pacheco, N., Salinas-Ruiz, J., Herrera-Corredor, J. A., & Hernández-Martínez, R. (2024). Levan Production by Suhomyces kilbournensis Using Sugarcane Molasses as a Carbon Source in Submerged Fermentation. Molecules, 29(5), 1–12. https://doi.org/10.3390/molecules29051105
Gujarathi, A. M., Patel, S. P., & Siyabi, B. Al. (2023). Insight into evolutionary optimization approach of batch and fed-batch fermenters for lactic acid production. Digital Chemical Engineering, 8(February), 100105. https://doi.org/10.1016/j.dche.2023.100105
Ko, H., Bae, J. H., Sung, B. H., Kim, M. J., Kim, C. H., Oh, B. R., & Sohn, J. H. (2019). Efficient production of levan using a recombinant yeast Saccharomyces cerevisiae hypersecreting a bacterial levansucrase. Journal of Industrial Microbiology and Biotechnology, 46(11), 1611–1620. https://doi.org/10.1007/s10295-019-02206-1
Korany, S. M., El-Hendawy, H. H., Sonbol, H., & Hamada, M. A. (2021). Partial characterization of levan polymer from Pseudomonas fluorescens with significant cytotoxic and antioxidant activity. Saudi Journal of Biological Sciences, 28(11), 6679–6689. https://doi.org/10.1016/j.sjbs.2021.08.008
Liu, C., Kolida, S., Charalampopoulos, D., & Rastall, R. A. (2020). An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods, 64(August 2019). https://doi.org/10.1016/j.jff.2019.103668
López-Gómez, J. P., & Venus, J. (2021). Potential role of sequential solid-state and submerged-liquid fermentations in a circular bioeconomy. Fermentation, 7(2). https://doi.org/10.3390/fermentation7020076
Mahmoodi, M., & Nassireslami, E. (2022). Control algorithms and strategies of feeding for fed-batch fermentation of Escherichia coli: a review of 40 years of experience. Preparative Biochemistry & Biotechnology, 52(7), 823-834.
Mehta, K., Shukla, A., & Saraf, M. (2024). Production Kinetics and Structural Characterization of Levan Derived from Bacillus megaterium KM3 Using Pretreated Cane Molasses. Journal of Polymers and the Environment, 32(4), 1602–1618. https://doi.org/10.1007/s10924-023-03054-y
Mummaleti, G., Sarma, C., Yarrakula, S., Urla, R., & Gazula, H. (2024). Production, properties and applications of levan polysaccharide. Food and Humanity, 3(July), 100369. https://doi.org/10.1016/j.foohum.2024.100369
Nambiar, K., P, S. K., Devaraj, D., & Sevanan, M. (2024). Development of biopolymers from microbes and their environmental applications. Physical Sciences Reviews, 9(4), 1903-1929.
Öner, E. T., Hernández, L., & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology Advances, 34(5), 827–844. https://doi.org/10.1016/j.biotechadv.2016.05.002
Pei, F., Ma, Y., Chen, X., & Liu, H. (2020). Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. International Journal of Biological Macromolecules, 161, 1181–1188. https://doi.org/10.1016/j.ijbiomac.2020.06.140
Phengnoi, P., Thakham, N., Rachphirom, T., Teerakulkittipong, N., Lirio, G. A., & Jangiam, W. (2022). Characterization of levansucrase produced by novel Bacillus siamensis and optimization of culture condition for levan biosynthesis. Heliyon, 8(12), e12137. https://doi.org/10.1016/j.heliyon.2022.e12137
Ramesh, C., Prasastha, V. R., Venkatachalam, M., & Dufossé, L. (2022). Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. Fermentation, 8(9), 1–23. https://doi.org/10.3390/fermentation8090460
Srikanth, R., Siddartha, G., Sundhar Reddy, C. H. S. S., Harish, B. S., Janaki Ramaiah, M., & Uppuluri, K. B. (2015). Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate Polymers, 123, 8–16. https://doi.org/10.1016/j.carbpol.2014.12.079
Vega-Vidaurri, J.A.; Hernández-Rosas, F.; Ríos-Corripio, M.A.; Loeza-Corte, J.M.; Rojas-López, M.; Hernández-Martínez, R. Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. Chem. Pap. 2022, 76, 2419–2429. https://doi.org/10.1007/s11696-021-02046-3
Wang, J., Xu, X., Zhao, F., Yin, N., Zhou, Z., & Han, Y. (2022). Biosynthesis and Structural Characterization of Levan by a Recombinant Levansucrase from Bacillus subtilis ZW019. Waste and Biomass Valorization, 13(11), 4599–4609. https://doi.org/10.1007/s12649-022-01814-w
Xu, M., Pan, L., Zhou, Z., & Han, Y. (2022). Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers. Carbohydrate Polymers, 291(August 2021). https://doi.org/10.1016/j.carbpol.2022.119519
Xu, M., Pan, L., Wang, B., Zou, X., Zhang, A., Zhou, Z., & Han, Y. (2023). Simulated digestion and fecal fermentation behaviors of levan and its impacts on the gut microbiota. Journal of agricultural and food chemistry, 71(3), 1531-1546. Zhang, X., Liang, Y., Yang, H., Yang, H., Chen, S., Huang, F., Hou, Y., & Huang, R. (2021). A novel fusion levansucrase improves thermostability of polymerization and production of high molecular weight levan. Lwt, 150(June), 111951. https://doi.org/10.1016/j.lwt.2021.111951