Alcántara-Martínez & Zendejas-Hernández

GLYCYRRHIZIN AND GLYCYRRHETINIC ACID: PHARMACOLOGICAL POTENTIAL FOR THE TREATMENT OF VIRAL RESPIRATORY INFECTIONS

GLICIRRIZINA Y ÁCIDO GLICIRRETÍNICO: POTENCIAL FARMACOLÓGICO PARA EL TRATAMIENTO DE INFECCIONES RESPIRATORIAS VIRALES

Autor(es): N. Alcántara-Martínez y U. Zendejas-Hernandez

Fuente: Mexican Journal of Technology and Engineering, Vol. 1, No. 2, pp. 9-21.

DOI:  https://doi.org/10.61767/mjte.001.2.0921  

Abstract

Glycyrrhizinic acid (also known as glycyrrhizin) (GA) and its derivative 18-β-Glycyrrhetinic acid (18b-GA), which are isolated from the plant Glycyrryza glabra, show several therapeutic properties, including antioxidant, anti-inflammatory, and antiviral activity. These are therefore being evaluated for several medical proposes, among them the treatment of respiratory infections induced by viruses. The current review aimed to highlight the potential of GA and 18b-GA as efficient drugs. Both molecules have demonstrated antiviral activity against SARS-CoV-2, due to different mechanisms; for instance, blocking key enzymes for virus entry to the cell or by limiting virus replication. Those properties are well known from in vitro and animal assay research, however, reports of their effects on humans are scarce. One of the main challenges of using GA and 18b-GA as a drug is improving their solubility and permeability, as well as using therapeutic doses without toxic effects. Due to the biological properties of GA and 18b-GA, the dose and administration type are crucial to achieving a high local concentration and therefore a therapeutic effect. 

Keywords: Glycyrrhizin, 18-β-Glycyrrhetinic acid, respiratory infections, antiviral activity, antioxidant activity, anti-inflammatory activity.

Resumen 

El ácido glicirricínico (también conocido como glicirricina) (GA) y su derivado, el ácido 18-β-glicirretínico (18b-GA), aislados de la planta Glycyrryza glabra, muestran diversas propiedades terapéuticas, que incluyen actividad antioxidante, antiinflamatoria y antiviral. Por lo tanto, estos fármacos están siendo evaluados con diferentes propósitos médicos, entre ellos el tratamiento de infecciones respiratorias inducidas por virus. El objetivo de la presente revisión fue resaltar el potencial de GA y 18b-GA como fármacos eficaces. Ambas moléculas han demostrado actividad antiviral frente a SARS-CoV-2, a través de diferentes mecanismos; por ejemplo, bloqueando enzimas clave para la entrada del virus a la célula o limitando la replicación del virus. Estas propiedades se conocen a partir de la investigación en ensayos in vitro y en animales, sin embargo, los reportes de sus efectos en humanos son escasos. Uno de los principales retos del uso de GA y 18b-GA como fármaco es mejorar su solubilidad y permeabilidad, así como utilizar dosis terapéuticas sin efectos tóxicos. Debido a las propiedades biológicas de GA y 18b-Ga, las dosis y el tipo de administración son cruciales para lograr una alta concentración local y, por lo tanto, un efecto terapéutico.

Palabras clave: Glicirricina, ácido 18-β-glicirretínico, infecciones respiratorias, actividad antiviral, actividad antioxidante, actividad antiinflamatoria.

Referencias

Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?. Pharmacology & therapeutics, 2020; 214: 107618.

Graebin CS, Verli H, Guimarães JA. Glycyrrhizin and glycyrrhetic acid: scaffolds to promising new pharmacologically active compounds. Journal of the Brazilian Chemical Society, 2010; 21: 1595-1615.

Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy research, 2018; 32(12): 2323-2339.

El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel-Daim M, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 2020; 10(3): 352.

Huo HZ, Wang B, Liang YK, Bao YY, Gu Y. Hepatoprotective and antioxidant effects of licorice extract against CCl(4)‐induced oxidative damage in rats. International Journal of Molecular Sciences, 2011; 12(10): 6529–6543.

Cao D, Jiang J, You L, Jia Z, Tsukamoto T, Cai H, Cao X. The protective effects of 18β-glycyrrhetinic acid on Helicobacter pylori-infected gastric mucosa in Mongolian Gerbils. BioMed Res. Int, 2016.

Galbiati V, Papale A, Galli CL, Marinovich M, Corsini E. Role of ROS and HMGB1 in contact allergen–induced IL-18 production in human keratinocytes. J. Invest. Dermatol, 2014; 134(11): 2719-2727.

Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomedicine plus, 2021; 1(3): 100043.

Baltina, LA, Tasi YT, Huang SH, Lai HC, Baltina LA, et al.  (2019). Glycyrrhizic acid derivatives as Dengue virus inhibitors. Bioorganic & medicinal chemistry letters, 29(20), 126645.

Luo P, Liu D, Li J. Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19. Int. J. Antimicrob. Agents, 2020; 55(6): 105995.

Rehman MFU, Akhter S, Batool AI, Selamoglu Z, Sevindik M, Eman R, Aslam M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics, 2021; 10(8): 1011. 

Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Materials Today, 2020; 49: 2999–3007.

Michaelis M, Geiler J, Naczk P, Sithisarn P, Leutz A, Doerr HW, Cinatl Jr J. Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression. PloS one, 2011; 6(5): e19705.

Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, Zhang J. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine, 2021; 85: 153364.

Cinatl Jr J, Michaelis M, Hoever G, Preiser W, Doerr HW. Development of antiviral therapy for severe acute respiratory syndrome. Antiviral research, 2005; 66(2-3): 81-97.

Sharma V, Katiyar A, Agrawal RC. Glycyrrhiza glabra: Chemistry and pharmacological activity. In J.‐M. Merillon, K. G. Ramawat (Eds.). Sweeteners: Pharmacology, biotechnology, and applications. Switzerland: Cham: Springer International Publishing; 2018; pp. 1–14.

Yeh CF, Wang KC, Chiang LC, Shieh DE, Yen MH, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol, 2013; 148(2): 466-473.

Van de Sand L, Bormann M, Alt M, Schipper L, Heilingloh CS, Steinmann E, et al. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses, 2021; 13: 609. 

Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and isblocked by a clinically proven protease inhibitor. Cell,  2020; 181:271–80 e278.

Murck H. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection?. Frontiers in Immunology, 2020; 11: 1239.

Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants, 2020; 9(7): 624.

Gowda P, Patrick S, Joshi SD, Kumawat, RK, Sen E. Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine, 2021; 142: 155496.

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 2003; 361(9374): 2045-2046.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 2012; 64: 4-17.

Baltina LA, Lai HC, Liu YC, Huang SH, Hour MJ, Baltina LA, … & Lin C W. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorganic & Medicinal Chemistry, 2021; 41:116204.

Stanetty C, Wolkerstorfer A, Amer H, Hofinger A, Jordis U, Claßen-Houben D, & Kosma P.. Synthesis and antiviral activities of spacer-linked 1-thioglucuronide analogues of glycyrrhizin. Beilstein journal of organic chemistry, 2012; 8(1): 705-711.

Wang LJ, Geng CA, Ma YB, Huang XY, Luo J, Chen H, … & Chen JJ. Synthesis, biological evaluation and structure–activity relationships of glycyrrhetinic acid derivatives as novel anti-hepatitis B virus agents. Bioorganic & medicinal chemistry letters, 2012; 22(10): 3473-3479.

Markov AV, Sen’kova AV, Warszycki D, Salomatina OV, Salakhutdinov NF, Zenkova MA, & Logashenko EB. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Scientific reports, 2017; 7(1): 1-15.

Mohammed EAH, Peng Y, Wang Z, Qiang X, & Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. Russian journal of bioorganic chemistry, 2022; 1-13. 

Baltina LA, Zarubaev VV, Baltina LA, Orshanskaya IA, Fairushina AI, Kiselev OI, & Yunusov MS. Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors. Bioorganic & Medicinal Chemistry Letters, 2015; 25(8): 1742-1746.

Baltina LA, Chistoedova ES, Kondratenko RM, & Plyasunova OA. Synthesis and anti-HIV-1 activity of new conjugates of 18β-and 18α-glycyrrhizic acids with aspartic acid esters. Chemistry of natural compounds, 2012;48(2): 262-266.

Baltina LA, Kondratenko RM, Baschenko N, & Pl’yasunova OA. Synthesis and biological activity of new glycyrrhizic acid conjugates with amino acids and dipeptides. Russian Journal of Bioorganic Chemistry, 2009; 35(4): 510-517.

Ding H, Deng W, Ding L, Ye X, Yin S, Huang W. Glycyrrhetinic acid and its derivatives as potential alternative medicine to relieve symptoms in nonhospitalized COVID‐19 patients. J Med Virol, 2020; 92(10): 2200-2204.

Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA., … & Cinatl J. Antiviral activity of glycyrrhizic acid derivatives against SARS− coronavirus. Journal of medicinal chemistry, 2005; 48(4), 1256-1259. 

Lin JC, Cherng JM., Hung MS, Baltina LA, Baltina L, & Kondratenko R. Inhibitory effects of some derivatives of glycyrrhizic acid against Epstein-Barr virus infection: Structure–activity relationships. Antiviral research, 2008; 79(1): 6-11.

Suzuki T, Tsukahara M, Akasaka Y, Inoue H. A highly sensitive LC–MS/MS method for simultaneous determination of glycyrrhizin and its active metabolite glycyrrhetinic acid: Application to a human pharmacokinetic study after oral administration. Biomedical Chromatography, 2017; 31(12): e4032.

Chen F, Chan KH, Jiang Y, Kao RYT, Lu HT, Fan KW, Yuen KY. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol, 2004; 31(1): 69-75.

Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol, 2006; 46(3): 167-192.

Zendejas-Hernandez U. Composición farmacéutica que contiene triterpenoides pentacíclicos. Mexico; MX/a/2021/005280, 2021. 

Steijn PHJ. Compounds, compositions and devices for use in the prevention or treatment of corona-virus infections. WIPO PCT; WO2021/198316A1, 2021. 

Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W, Liang J. Glycyrrhizic‐acid‐based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small, 2020; 16(13): 1906206.

Zadeh JB, Kor ZM, Goftar MK. Licorice (Glycyrrhiza glabra Linn) as a valuable medicinal plant. Int.j.adv.biol.biomed.res, 2013; 1(10): 1281-1288.

Rossi T, Fano RA, Castelli M, Malagoli M, Ruberto AI, Baggio G, … & Barbolini G. Correlation between high intake of glycyrrhizin and myolysis of the papillary muscles: an experimental in vivo study. Pharmacology & toxicology, 1999; 85: 221-229.

Matsumoto Y, Matsuura T, Aoyagi H, Matsuda M, Hmwe SS, Date T, et al. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PloS one, 2013; 8(7): e68992.

Mendes-Silva W, Assafim M, Ruta B, Monteiro RQ, Guimarães JA, Zingali RB. Antithrombotic effect of Glycyrrhizin, a plant-derived thrombin inhibitor. Thromb. Res., 2003; 112(1-2): 93–98.

Assafim M, Ferreira MS, Frattani FS, Guimarães JA, Monteiro RQ, Zingali RB. Counteracting effect of glycyrrhizin on the hemostatic abnormalities induced by Bothrops jararaca snake venom. Br J Pharmacol, 2006; 148(6): 807.

Rizzato G, Scalabrin E, Radaelli M, Capodaglio G, Piccolo O. A new exploration of licorice metabolome. Food Chemistry, 2017; 221: 959–968.

Grippaudo FR, Di Russo PP. Effects of topical application of β‐resorcinol and glycyrrhetinic acid monotherapy and in combination with fractional CO2 laser treatment for benign hand hyperpigmentation treatment. J. Cosmet. Dermatol, 2016; 15(4): 413–419.

Miyake K, Tango T, Ota Y, Mitamura K, Yoshiba M, Kako M, et al. Efficacy of stronger neo-minophagen C compared between two doses administered three times a week on patients with chronic viral hepatitis. J. Gastroenterol. Hepatol, 2002; 17: 1198–1204.

Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features. Angewandte Chemie International Edition in English, 2015; 54: 5408-5412.

Soufy H, Yassein S, Ahmed AR, Khodier MH, Kutkat MA, Nasr SM, Okda FA. Antiviral and immune stimulant activities of glycyrrhizin against duck hepatitis virus. Afr J Tradit Complement Altern Med, 2012; 9(3): 389-395.