Ordaz-Hernández et al. 2024

Venenos de animales como fuente de medicamentos: Más allá del peligro 

Animal venoms as a source of medicines: Going beyond the danger

Autor(es): A. Ordaz-Hernández, M. Corona-Ramírez, M. Herrera-Martínez y M. González-Vázquez

Fuente: Mexican Journal of Technology and Engineering, Vol. 3, No. 2, pp. 4-12.

DOI: https://doi.org/1061767//mjte.003.2.0412

Resumen

En la naturaleza encontramos animales que han desarrollado la capacidad de producir sustancias tóxicas para inmovilizar a sus presas o para defenderse de los depredadores. Estas sustancias, conocidas como “venenos”, también representan un riesgo para los mamíferos, incluyendo al humano, ya que contienen toxinas y enzimas que afectan el funcionamiento normal del sistema respiratorio, inmune, cardiovascular y nervioso. No obstante, gracias a los avances científicos el concepto de los venenos ha cambiado de ser sustancias peligrosas a ser tesoros naturales para la medicina. Hasta ahora se ha descubierto que las toxinas y otros componentes poseen propiedades antimicrobianas, antitumorales, hipoglucemiantes, hipotensoras, analgésicas, anticoagulantes, y otras más, que han permitido el desarrollo de medicamentos e impulsado la aplicación innovadora de los componentes del veneno en el diagnóstico clínico y la cosmética. Se espera que en el futuro se desarrollen más medicamentos, y surjan nuevas aplicaciones para los componentes del veneno de animales. Al respecto, la diversidad de animales venenosos que existe en nuestro país podría ser clave para descubrir nuevos compuestos bioactivos.

Palabras clave: Veneno de animales, toxinas, péptidos, enzimas, medicamentos.

Abstract

In nature, we find animals that have developed the ability to produce toxic substances to immobilize their prey or defend themselves from predators. These substances, known as “venoms,” also pose a risk to mammals, including humans, as they contain toxins and enzymes that affect the normal functioning of the respiratory, immune, cardiovascular, and nervous systems. However, it’s important to note that scientific advances have played a crucial role in shifting the concept of venoms from hazardous substances to natural treasures for medicine. To date, it has been discovered that toxins and other components possess antimicrobial, antitumor, hypoglycemic, hypotensive, analgesic, and anticoagulant properties. These properties have enabled the development of medications and boosted innovative applications of venom components in clinical diagnostics and cosmetics. More medications and new applications for animal venom components are expected to be developed in the future. In this regard, our country’s diversity of venomous animals could play a pivotal role in discovering new bioactive compounds.

Keywords: Animal venoms, toxins, peptides, enzymes, drug development.

Referencias

Bordon, K.C.F., Cologna, C.T., Fornari-Baldo, E.C., Pinheiro-Júnior, E.L., Cerni, F.A., Amorim, F.G., & Arantes, E.C. (2020). From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Frontiers in Pharmacology, 11, 1132. https://doi.org/10.3389/fphar.2020.01132.

Ghosh, A., Roy, R., Nandi, M. et al. (2019). Scorpion venom–toxins that aid in drug development: a review. International Journal of Peptide Research and Therapeutics 25, 27–37. https://doi.org/10.1007/s10989-018-9721-x.

Herzig, V. (2021). Animal Venoms-Curse or Cure?. Biomedicines, 9(4), 413. https://doi.org/10.3390/biomedicines9040413.

Joglekar, A.V., Dehari, D., Anjum, M.M. et al. (2022). Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations. Future Journal of Pharmaceutical Sciences 8, 34. https://doi.org/10.1186/s43094-022-00415-7.

Kini, R.M. & Utkin, Y.N. (2023). Molecular Mechanisms of Animal Toxins, Venoms and Antivenoms. International Journal of Molecular Sciences, 24(22), 16389. https://doi.org/10.3390/ijms242216389.

Minutti-Zanella, C., Gil-Leyva, E. J., & Vergara, I. (2021). Immunomodulatory properties of molecules from animal venoms. Toxicon: official journal of the International Society on Toxinology, 191, 54–68. https://doi.org/10.1016/j.toxicon.2020.12.018.

Nguyen, JK, Masub, N. & Jagdeo, J. (2020). Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence. Journal of cosmetic dermatology, 19(7), 1555–1569. https://doi.org/10.1111/jocd.13344.

Rodríguez-Solís, A.J., Villegas-Villarreal, E.C., & Corzo Burguete, G.A. (2019). Venenos animales, fuente para el desarrollo de agentes terapéuticos. Inventio, 15(36), 45–53. https://doi.org/10.30973/inventio/2019.15.36/6.

Utkin, Y.N, Vassilevski, A.A, Kudryavtsev, D., & Undheim, E.A.B (2019). Editorial: Animal toxins as comprehensive pharmacological tools to identify diverse ion channels. Frontiers in Fharmacology, 10, 423. https://doi.org/10.3389/fphar.2019.00423.

Verdoni, M., Roudaut, H., De Pomyers, H., Gigmes, D., Bertin, D., Luis, J., & Mabrouk, K. (2016). ArgTX-636, a polyamine isolated from spider venom: A novel class of melanogenesis inhibitors. Bioorganic & Medicinal Chemistry, 24(22), 5685–5692. https://doi.org/10.1016/j.bmc.2016.08.023.

Yacoub, T., Rima, M., Karam, M., & Fajloun, J.S.A.Z. (2020). Antimicrobials from venomous animals: An overview. Molecules (Basel, Switzerland), 25(10), 2402. https://doi.org/10.3390/molecules25102402.

Yang, X., Wang, Y., Wu, C., & Ling, E. A. (2019). Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders. Current medicinal chemistry, 26(25), 4749–4774. https://doi.org/10.2174/0929867325666181031122438.

Zhang, L & Falla, T. (2009). Cosmeceuticals and peptides. Clinics in Dermatology 27(5), 485–494. https://doi.org/10.1016/j.clindermatol.2009.05.013.