López-Ordaz et al. 2023-2

CARACTERIZACIÓN FISICOQUÍMICA DE PELÍCULAS COMESTIBLES A BASE DE ALMIDÓN DE MAÍZ (Zea mays) YHARINA DE YUCA (Manihot esculenta crantz)

PHYSICOCHEMICAL CHARACTERIZATION OF EDIBLE FILMS BASED ON CORN STARCH (Zea mays) AND CASSAVA FLOUR (Manihot esculenta crantz)

Autor(es):  P. López-Ordaz, J. Yáñez-Fernández, E.A. Vargas-León, F.J. Martínez-Valdez, J.M. Castillo-Minjarez, A. Totosaus-Sánchez, M.E. Rodríguez-Huezo y I. García-Martínez

Fuente: Mexican Journal of Technology and Engineering, Vol. 2, No. 1, pp. 30-43.

DOI:  https://doi.org/10.61767/mjte.002.1.3043 

Resumen 

El aprovechamiento de nuevos materiales para elaborar películas comestibles (PC) ha suscitado en la actualidad el interés de reducir problemas de contaminación y reciclaje, además han cobrado un gran interés debido a su capacidad para conservar los alimentos manteniendo sus propiedades físicas y organolépticas durante más tiempo. Por lo que, estos nuevos materiales deben tener buenas propiedades mecánicas y de barreras aceptables (flexibles y una estructura elástica) para facilitar su aplicación. El objetivo de este trabajo fue estudiar los efectos de la composición sobre las propiedades mecánicas, así como, opacidad, permeabilidad al vapor de agua y microestructura de películas comestibles (PC) de almidón de maíz (Zea mays) y harina de yuca (Manihot esculenta cranz). Las concentraciones de almidón y harina fueron de 1 y 2%, respectivamente, mezclándose con albumina de huevo (0.75 mg/mL), usando glicerol al 3% como plastificante. Las PC con mejores propiedades mecánicas y ópticas fueron obtenidas con la mezcla al 1% de almidón de maíz (AM) y harina de yuca (HY), requiriendo una fuerza de 15 N de esfuerzo a la punción con 0.35 cm de deformación, 35% de elongación y 10 Kg/mm2 de resistencia a la ruptura. Además, mostraron una opacidad de 5.2 Au*nm/mm y 1.2×10-14 g/m s Pa de permeabilidad al vapor de agua (WVP). Estos resultados mostraron que las PC a base de AM – HY al 1% podrían ser usadas como una alternativa para recubrir frutas y hortalizas, prolongando su vida útil. 

Palabras clave: Almidón de maíz, harina de yuca, deformación, elongación, permeabilidad al vapor de agua.

Abstract

The use of new materials to elaborate edible films (PC) has currently raised the interest to reduce contamination, and recycling problems, in addition they have gained great interest due to their capacity to preserve food maintaining their physical, and organoleptic properties for a long time. Therefore, these new materials must have good mechanical properties, and acceptable barriers (flexible and elastic structure) to facilitate their application. The objective of this work was to study the effects of composition on the mechanical properties, as well as opacity, water vapor permeability, and microstructure of edible films (PC) of corn starch (Zea mays), and cassava flour (Manihot esculenta cranz). The concentrations of starch, and flour were 1 and 2%, respectively, mixed with egg albumin (0.75 mg/mL), using 3% glycerol as plasticizer. The PC with the best mechanical, and optical properties were obtained with the 1% mixture of corn starch (AM), and cassava flour (HY), requiring a force of 15 N of puncture stress with 0.35 cm of deformation, 35% of elongation and 10 Kg/mm2 of breaking strength. In addition, they showed an opacity of 5.2 Au*nm/mm and 1.2×10-14 g/m s Pa water vapor permeability (WVP). These results showed that 1% AM-HY based PC could be used as an alternative for coating fruits and vegetables, prolonging their shelf life. 

Keywords: Corn starch, cassava flour, deformation, elongation, water vapor permeability.

Referencias

Wu, Y., Weller, C. L., Hamouz, F., Cuppett, S. L., & Schnepf, M. Development and application of multicomponent edible coatings and films: A review. Adv. Food Nutr. Res: 2002; 347-394.

WU, Feng; Misra, Manjusri; Mohanty, Amar K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci.  2021, vol. 117, p. 101395.

Cui, C., Ji, N., Wang, Y., Xiong, L., & Sun, Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci Technol. 2021; 116, 854-869.

Ji, N., Ge, S., Li, M., Wang, Y., Xiong, L., Qiu, L., & Sun, Q. Effect of annealing on the structural and physicochemical properties of waxy rice starch nanoparticles: Effect of annealing on the properties of starch nanoparticles. Food Chem. 2019; 286, 17–21.

Mali, Susana., Grossmann, E. M. Victoria., García, A. María., Martino, N. Martino y Zaritzky, E. Noemi. Microstructural characterization of yam starch films. Carbohydr. Polym. 2002; 50, 4, 379-386.

Senturk Parreidt, T., Müller, K., & Schmid, M. Alginate-based edible films and coatings for food packaging applications. Foods. 2018; 7(10), 170.

Pereda, Mariana., Amica, Guillermina. y Marcovich, E. Norma. Development and characterization of edible chitosan/olive olive oil emulsion films. Carbohydr. Polym. 2012; 87, 2, 1318-1325.

Jangchud, A. y Chinnan, M.S. Peanut protein film as affected by drying temperature and pH of film forming solution. J. Food Sci. 1999; 64, 1, 53-157.

G., Gornall., C. J., Bardawill., and M.M., David. Determination of serum proteins by means of the biuret reaction. JBC. 1949; 177, 751-766.

Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., … & Han, W. Application of protein-based films and coatings for food packaging: A review. Polymers, 2019; 11(12), 2039.

Salgado, R. Pablo., Fernández, B. Graciela., Drago, R. Silvina., and Mauri, N. Adriana. Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocoll. 2011; 25, 6, 1433-1440.

Vieyra Ruiz, H., Martínez, E. S. M., & Méndez, M. A. A. Biodegradability of polyethylene starch blends prepared by extrusion and molded by injection: Evaluated by response surface methodology. Starch‐Stärke, 2011; 63(1), 42-51.

Vázquez-Luna, A., Santiago, M., Rivadeneyra-Domínguez, E., & Díaz-Sobac, R. Edible films based on nanostructured starch as barrier material moisture. CienciaUAT, (2019). 13(2), 152-164

Turhan, K. N., & Sahbaz, F. Water vapor permeability, tensile properties and solubility of methylcellulose based edible films. J. Food Eng. 2004; 61(3), 459-466. 

Salazar, V. M. S., Márquez, M. A. T., & Vargas, A. L. Propiedades físicas, mecánicas y de barrera de películas comestibles a base de mucílago de Nopal como alternativa para la aplicación en frutos. Revista Iberoamericana de Tecnología Postcosecha. 2015; 16(2), 193-198.

Noshirvani, N., Hong, W., Ghanbarzadeh, B., Fasihi, H., & Montazami, R. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int. J. Biol. Macromol. 2018; 107, 2065–2074.

Li, J., Ye, F., Lei, L., & Zhao, G. Combined effects of octenyl succination and oregano essential oil on sweet potato starch films with an emphasis on wáter resistance. Int. J. Biol. Macromol. 2018; 115, 547–553.

Farajpour, R., Emam Djomeh, Z., Moeini, S., Tavakolipour, H., & Safayan, S. Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. Int. J. Biol. Macromol. 2020; 149, 941–950.

Wang, K., Wang, W., Ye, R., Liu, A., Xiao, J., Liu, Y., & Zhao, Y. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations. Food chem. 2016; 216, 209-216.

Zhang, Y., & Han, J. H. Plasticization of pea starch films with monosaccharides and polyols. J. Food Sci. 2006; 71(6), E253-E261.

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. Antiplasticizing effect of glycerol and sorbitol on the properties of cassava starch films. J. Food Technol. 2008; 11(3): pp. 194- 200.

Aguilar-Méndez, M. A., Martín-Martínez, S., Espinoza-Herrera, N. L., Sánchez-Flores, M., Cruz-Orea, A., & Ramírez-Ortíz, M. E. Caracterización y aplicación de películas a base de gelatina-carboximetilcelulosa para la preservación de frutos de guayaba. Superficies y vacío. 2012; 25(1), 1-7.

Tapia-Blácido, D., Sobral, P. J., & Menegalli, F. C. Development and characterization of biofilms based on Amaranth flour (Amaranthus caudatus). J. Food Eng. 2005; 67(1-2), 215-223.

Sobral, P. D. A., Menegalli, F. C., Hubinger, M. D., & Roques, M. A. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food hydrocoll. 2001; 15(4-6), 423-432. 

Coughlan, K., Shaw, N. B., Kerry, J. F., & Kerry, J. P. Combined effects of proteins and polysaccharides on physical properties of whey protein concentrate‐based edible films. J. Food Sci. 2004; 69(6), E271-E275.

Chang, Y. P., Abd Karim, A., & Seow, C. C. Interactive plasticizing-antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocoll. 2006; 20(1), 1-8.

Olu-Owolabi, B. I., Afolabi, T. A., & Adebowale, K. O. Pasting, thermal, hydration, and functional properties of annealed and heat-moisture treated starch of sword bean (Canavalia gladiata). Int. J. Food Prop. 2011; 14(1), 157-174. 

Contreras-Pérez, R. K., De la Torre-Gutiérrez, L., González-Cortés, N., & Jiménez-Vera, R. Caracterización funcional de almidones de plátano cuadrado (Musa balbisiana Colla). Eur. Sci. J. 2018; 14(30), 82-97.

Aguilar-Méndez, M. A., Martin-Martínez, E. S., Ortega-Arroyo, L., & Cruz-Orea, A. Application of differential scanning calorimetry to evaluate thermal properties and study of microstructure of biodegradable films. Int. J. Thermophys. 2010; 31, 595-600.

Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Neto, A. R. S., Marques, A. C. P., Marconcini, J. M., … & Oliveira, J. E. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr. Polym. 2016; 137, 452-458. 

Aguilar‐Méndez, M. A., Martín‐Martínez, E. S., Tomas, S. A., Cruz‐Orea, A., & Jaime‐Fonseca, M. R. Gelatine-starch films: Physicochemical properties and their application in extending the post‐harvest shelf life of avocado (Persea americana). J. Sci. Food Agric. J SCI FOOD AGR. 2008; 88(2), 185-193.